Rule generation and model selection used for medical diagnosis

نویسندگان

  • Jürgen Paetz
  • Rüdiger W. Brause
چکیده

In medical data analysis classification combined with rule generation is a common technique to obtain diagnosis results together with a rule based explanation. In this contribution we apply a neural network based rule generator in the domain of septic shock research. The septic shock is of special interest in intensive care medicine due to its high lethality rate. We describe the functionality of the neuro-fuzzy algorithm and present classification and rule generation results of our analysis. Because we repeated our analysis with randomly selected test data to calculate statistically valid mean results, we generated one neural network with different architecture for each repetition. To decide the important question which of the different models should be used in the application phase, we propose a useful method based on similarity measures for rules resp. rule sets to select one representative network out of the set of trained networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Rule Generation Methods for Fuzzy Controller

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...

متن کامل

A Novel Method for Selecting the Supplier Based on Association Rule Mining

One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...

متن کامل

A Rule Extractor for Diagnosing the Type 2 Diabetes Using a Self-organizing Genetic Algorithm

Introduction: Constructing medical decision support models to automatically extract knowledge from data helps physicians in early diagnosis of disease. Interpretability of the inferential rules of these models is a key indicator in determining their performance in order to understand how they make decisions, and increase the reliability of their output. Methods: In this study, an automated hyb...

متن کامل

Evaluation of Suspected Pediatric Appendicitis with Alvarado Method Using a Computerized Intelligent Model

Background: Acute appendicitis is one of the common and urgent illnesses among children.  Children usually are unable to help the physicians completely due to weakness in describing the medical history. Moreover, acute appendicitis overlaps with conditions of other diseases in terms of Symptoms and signs in the first hours of presentation. These conditions lead to unwanted biases as well as err...

متن کامل

Selection of Variables that Influence Drug Injection in Prison: Comparison of Methods with Multiple Imputed Data Sets

Background: Prisoners, compared to the general population, are at greater risk of infection. Drug injection is the main route of HIV transmission, in particular in Iran. What would be of interest is to determine variables that govern drug injection among prisoners. However, one of the issues that challenge model building is incomplete national data sets. In this paper, we addressed the process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002